What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features

Pasha Khosravi Y

Yitao Liang YooJung Choi

Guy Van den Broeck

{pashak, yliang, yjchoi, guyvdb}@cs.ucla.edu

Motivation

Classifiers are generally not able to make predictions in presence of uncertainty over input features ${\bf X}$

 \Rightarrow e.g., with missing values!

UCLA

		X_1	X_2	$\mathcal{F}(x_1, x_2)$
$\mathbf{w} =$	$\begin{bmatrix} -1.16\\ 2.23\\ -0.20 \end{bmatrix}$	1 1 0	1 0 1	$\begin{array}{c} 0.70 \\ 0.74 \\ 0.20 \end{array}$
		0	0	0.24

A logistic regressor with weights ${f w}$ and its predictions

$P_1(c)$	C	$P_1(x_1 C)$	C	$P_1(x_2 C)$

The probabilistic way to deal with this, is to *compute the expected predictions* of a classifier given a feature distribution. That is, we want to classify a partial sample y as:

 $E_{\mathcal{F},P}(\mathbf{y}) = \mathbb{E}_{\mathbf{m} \sim P(\mathbf{M}|\mathbf{y})} [\mathcal{F}(\mathbf{ym})]$

where \mathcal{F} is a classifier, P a distribution over input features $\mathbf{X} = \mathbf{Y}\mathbf{M}$, and \mathbf{M} denotes those that are missing.

How hard is computing expectations?

Surprisingly computing expectations is *hard for even simple classifiers and distributions*:

 \mathbf{F} is a nontrivial classifier and P is uniform \Rightarrow #P-Hard [1]

• \mathcal{F} is a single-feature classifier and P is an arbitrary PGM \Rightarrow #P-Hard [1]

Two Naive Bayes models conforming to the above logistic regressor.

Predictions with missing values

 \Rightarrow Competitive w.r.t. test set predictions (accuracy)

$\blacksquare \mathcal{F}$ is a logistic regressor and P Naive Bayes

 \Rightarrow we prove it to be NP-Hard!

Conformant Learning

We say $P(\mathbf{X}, C)$ **conforms** with $\mathcal{F} : \mathcal{X} \to [0, 1]$ if their classifications agree: $P(c \mid \mathbf{x}) = \mathcal{F}(\mathbf{x})$ for all \mathbf{x} .

Conformant learning finds the generative model $P_{\theta}(\mathbf{X}, C)$ which conforms to a classifier $\mathcal{F}(\mathbf{x})$ and maximises the feature likelihood:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{d=(\mathbf{x})\in D} \sum_{c} P_{\boldsymbol{\theta}}(\mathbf{x}, c)$$

s.t. $\forall \mathbf{x} : P_{\boldsymbol{\theta}}(c \mid \mathbf{x}) = \mathcal{F}(\mathbf{x})$

Naive Conformant Learning (NaCL) employs a Naive Bayes model for P and a Logistic Regressor for $\mathcal F$

Preserving logistic regression predictions (cross-entropy)

Generating local explanations

We look for the *sufficient explanation* of $\mathcal{F}(\mathbf{x})$ w.r.t. P as:

 $\underset{\mathbf{e} \subseteq \mathbf{x}_{+}}{\operatorname{argmin}} | \mathbf{e} |$ s.t. $\operatorname{sign}(E_{\mathcal{F},P}(\mathbf{ex}_{-}) - 0.5) = \operatorname{sign}(\mathcal{F}(\mathbf{x}) - 0.5)$

with \mathbf{x}_+ as the *supporting features*, and \mathbf{x}_- the *opposing* ones.

 \Rightarrow efficiently solvable as geometric programming

[1] Dan Roth. *"On the hardness of approximate reasoning"*. In: Artificial Intelligence 82.1–2 (1996), pp. 273–302

Correctly classified samples

Misclassified samples

IJCAI2019 - 15th August 2019, Macao · Code - github.com/UCLA-StarAI/NaCL