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Classifiers are generally not able to make predictions in
presence of uncertainty over input features X

—> e.g., with missing values!

The probabilistic way to deal with this, is to compute the
expected predictions of a classifier given a feature distribution.
That is, we want to classify a partial sample y as:

Erply) = . P‘?M ’ F(ym)]

where F is a classifier, PP a distribution over input features
X = YM, and M denotes those that are missing.

How hard is computing expectations?

Surprisingly computing expectations is hard for even simple
classifiers and distributions:

m JF is a nontrivial classifier and Pis uniform — #P-Hard [1]

m f is a single-feature classifier and P is an arbitrary PGM
—> #P-Hard [1]

m S is a logistic regressor and P Naive Bayes
—> we prove it to be NP-Hard!

Conformant Learning

We say P(X, C') conforms with F : X — |0, 1] if their
classifications agree: P(c | x) = F(x) for all x.

Conformant learning finds the generative model Py(X, C')
which conforms to a classifier F(x) and maximises the feature

likelihood:
argmax Py(x, C
v TT X A
d=(x)eD ¢

s.t. Vx 1 Py(c| x) = F(x)

Naive Conformant Learning (NaCL) employs a Naive Bayes
model for /2 and a Logistic Regressor for Jf

—> efficiently solvable as geometric programming
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A logistic regressor with weights W and its predictions
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Two Naive Bayes models conforming to the above logistic regressor.

Predictions with missing values
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—> Competitive w.r.t. test set predictions (accuracy)
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—> Preserving logistic regression predictions (cross-entropy)

Generating local explanations

We look for the sufficient explanation of F (x) w.r.t. P as:

argmin | e |
eCxy

s.t.  sign(Er p(ex_) — 0.5) = sign(F(x) — 0.5)

with X as the supporting features, and X_ the opposing ones.
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